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LETTER TO THE EDITOR 

A modified form for the real-space embedding potential 

A J Fisher 
Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK 

Received 2 May 1990 

Abstract.  An alternative form for the real-space embedding potential of Inglesfield 
is derived. The new form does not involve inverting a Green function over a surface, 
but it does involve normal derivative terms. The relationship to the embedding 
potential for a system described by a discrete basis set is clarified. 

Suppose we wish to find the eigenstates $E of the Schrodinger equation with energy E ,  
but to  restrict our calculation to some subdomain of space (region 1) while implicitly 
accounting for the presence of the rest. This type of situation arises in electronic 
structure calculations at point, line and planar defects in solids where one wishes to  
account for the presence of the bulk; the subdomain 1 is then the region of space 
immediately surrounding the defect. The most usual approach to  such a problem 
involves the use of scattering theory; alternatives do however exist in the form of Green 
function matching techniques (Inglesfield 1970, Heine 1980) or embedding theories 
(Inglesfield 1981, Baraff and Schluter 1986, Fisher 1988, Inglesfield and Benesh 1988). 
The embedding theories can be formulated either in real space or in an arbitrary set 
of basis functions and rely on adding an effective energy-dependent potential, usually 
known as the embedding potential, to the Hamiltonian at  the boundary between 
region 1 and region 2. The embedding potential has the effect of constraining the 
wave-function to satisfy the correct boundary condition at  the surface. 

Forms are available for the embedding potential which, broadly speaking, involve 
inverting a Green function either over the whole of region 1 or over the surface between 
the regions. This inversion can be difficult to perform; especially in defect problems 
where the surface may have an irregular shape and a convenient set of orthogonal 
functions upon it may not be available. In this letter we show how it is possible to  
write the embedding potential in real space particularly simply, in a form that does 
not involve any inversions, in terms of the bulk Green function that vanishes on the 
surface. This is interesting because it mirrors the structure of the simplest possible 
forms for the embedding potential in a discrete basis set, which have been known for 
over forty years (Feshbach 1948). Finally we shall show how the new form may be 
used to  find the embedding potential for all values of the angular momentum for a 
spherical embedding surface where the potential in the external region 2 is uniformly 
zero. The known solution for the s-wave case I = 0 is recovered. 

First we consider the alternative form for the embedding potential in real space. 
Inglesfield (1981) has shown that the boundary condition on over the surface S 
separating region 1 from the remaining region 2 can be expressed (in atomic units 
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where ti = m, = 1) in the form 

= 2 I d 2 r l  C,(T, T ~ ) $ , ( T ~ )  
a n  

where T is supposed to  lie on the surface S, the integral runs over the surface S, a / an  
denotes the derivative normal to S and C, is a non-local energy-dependent operator 
that is defined on S and known as the embedding potential. 

Inglesfield (1981) derives the following expression for the embedding potential: 

where G, is any Green function for the Schrodinger equation in region 2, i.e. satisfying 

(-io; + V ( T ~ )  - E)GE(T~,TZ) = - b ( ~ 1  - ~ 2 )  (3) 

when r l ,  r2 lie in region 2 and Ggl is the inverse of this quantity on the surface S, 
i.e. the operator which satisfies 

I d2T2 GE(T1 3 T 2 ) G z ' ( T 2 ,  T 3 )  = b 2 ( T 1  - T 3 ) .  

Equation (2) becomes especially simple if the Green function is chosen 
the von Neumann boundary condition that its normal derivative vanishes 

(4) 

to satisfy 
on S; the 

embedding potential then becomes simply the surface inverse GE1. 
We shall now show that another simple expression for the embedding potential in 

terms of the Green function can be obtained if the latter is chosen to satisfy, not a 
von Neumann boundary condition, but the Dirichlet boundary condition 

G,(TI,T2) = 0 (5) 

whenever r 1  or r2 lies on S. We begin by multiplying the Schrodinger equation for 
$,(rl) by GE(r1 , rz )  and equation (3) by $(rl), integrating the coordinate T~ over 
region 2, subtracting and using Green's theorem with the convention that normal 
derivatives are defined in the direction passing from region 1 into region 2 to obtain: 

Taking the normal derivative with respect to the coordinate T~ we find 

Comparing with Equation (1) we find that the embedding potential is given by 

This is our principal result. Its significance is twofold. First, it permits one to  
obtain the embedding potential without the need to perform a surface inversion; this 
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may be advantageous if the surface S is a complicated shape so that it is not convenient 
to  find an orthogonal set of functions upon it in which to  expand G,. Secondly, it 
provides an immediate link with the corresponding theory of embedding for a discrete 
basis set. 

We next consider the connection with embedding in a discrete basis set. If we 
consider a problem described, not in terms of a Hamiltonian in real space but in 
terms of a Hamiltonian matrix in some basis set, it is still possible to  use very similar 
embedding techniques to  reduce the problem to one involving just some part of the 
whole basis set. For example, the basis set might consist of localised atomic orbitals 
and we might wish to work only with the states immediately surrounding some defect 
(Feshbach 1948, Pryce 1950, Lowdin 1951, Baraff and Schliiter 1986, Fisher 1988). If 
the matrix Q is defined as 

Q = E I - H  (9) 

and the basis is partitioned into two subsets 1 and 2 ,  then it is easy to show that the 
wave function projected onto subset 1, $ J 1 ,  satisfies the equation 

( Q 1 1 -  C 1 l ) S 1  = 0 (10) 

Cl1 = Q 1 2 ( Q 2 2 ) - l Q 2 1  ' (11) 

where the embedding potential for the discrete basis set is 

The analogy between (8) and (11) straightforward; the inverse of the matrix Q22 

is simply the Green function for region 2 when it is decoupled from region 1, while Q12 

and Q21 are analogous to  the normal derivative terms which, for a local potential, are 
the only parts of the Hamiltonian which are not diagonal in the real-space position 
represent ation. 

Finally, we discuss as an example the embedding potential for the case treated 
by Inglesfield (1970, 1981) in which the applied potential is uniformly zero outside a 
sphere of radius r,. We take this sphere as the surface S; the eigenstates in region 2 
which vanish on S with energy E = k 2 / 2  are 

$ J h l c ( T l  0, $1 = Ym(O, 4 ) R , ( W  (12) 

where Yrm is a spherical harmonic and the radial function R, is given by 

R , ( k r )  = ( h / l ) ( k r )  + A , ( k ) / ~ / ~ ) ( k r ) )  (13) 

with 

hj l ) (kr , )  
hj2)( kr,) ' 

A , ( k )  = - 

Here hj') and hj2) are the spherical Hankel functions (Abramowitz and Stegun 1965). 
The retarded Green function which obeys the Dirichlet boundary condition (5) can 
be written as a sum over these eigenstates 
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and the integral can be evaluated by contour integration. If we write the result in the 
form 

then 

for E > 0, where r> and r< are respectively the larger and the smaller of r1 and r2. 
From equation (8), the coefficients in the corresponding expansion of the embedding 
potential are therefore 

For the special case 1 = 0 we recover Inglesfield's result 

To conclude, we have derived a new expression for the embedding potential which 
clarifies the relationship with the corresponding form for a discrete basis set. The new 
expression does not require one to perform any surface inversion to calculate the em- 
bedding potential. We have shown how the new formula reproduces the known results 
for a spherically symmetric embedding surface surrounded by an infinite region of zero 
potential. It should be stressed, however, that the procedure relies on one's ability to 
construct a Green function with the required Dirichlet boundary condition ( 5 ) ;  the 
difficulty of finding the analogous quantity Q;: in a discrete basis set has prevented 
the use of equation (11) as a practical expression for the embedding potential. It may 
be, therefore, that the chief value of the present work is conceptual, in that it draws 
once again an analogy between real space and other possible basis sets. 

The author is grateful to St John's College, Oxford for the award of a Junior Research 
Fellowship and to Dr A M Stoneham and Professor J E Inglesfield for their comments. 
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